Formation Process of LiSn₂(PO₄)₃, a Monoclinically **Distorted NASICON-Type Structure**

Ana Martínez, José M. Rojo,* Juan E. Iglesias, Jesús Sanz, and Rosa M. Rojas

Instituto Ciencia de Materiales, CSIC, c/Serrano 115 dpdo, 28006 Madrid, Spain

Received April 5, 1994[®]

The formation of $LiSn_2(PO_4)_3$ from a stoichiometric mixture of Li_2CO_3 , SnO_2 , and $(NH_4)_2$ - HPO_4 heated in the temperature range 180-1200 °C has been followed by XRD, TG and NMR (¹¹⁹Sn, ³¹P, and ⁷Li) techniques. Amorphous compounds and crystalline SnP₂O₇ have been identified as intermediate products. Two phases of $LiSn_2(PO_4)_3$ have been obtained: one coexists with SnO_2 and SnP_2O_7 while the other has been prepared as a single phase at 1200 °C. The spectroscopic and diffraction data agree with a rhombohedral R3c symmetry for the first phase and a monoclinic Cc symmetry for the second one.

Introduction

 $LiSn_2(PO_4)_3$ belongs to the NASICON type compounds which are, in general, good conductors of alkali ions.¹⁻¹⁵ The framework is built up by $Sn_2(PO_4)_3$ units, which consist of two SnO_6 octahedra linked to each other by three PO_4 tetrahedra.¹⁶⁻²¹ The Li⁺ ions can be placed in two different sites: one, in an octahedral oxygen environment, at the intersection of three conduction channels (M1 site) and the other, at each bend of the conduction channels in a polyhedron of eight neighboring oxygens (M2 site). A middle position in between these two sites would be also available.

The lithium tin orthophosphate was firstly prepared²² by heating stoichiometric amounts of Li₂CO₃, SnO₂, and

- (3) Taylor, B. E.; English, A. D.; Berzins, T. Mater. Res. Bull. 1977, 12, 171.
- (4) Petit, D.; Colomban, Ph.; Collin, G.; Boilot, J. P. Mater. Res. Bull. 1986, 21, 365.
- (5) Sudreau, F.; Petit, D.; Boilot, J. P. J. Solid State Chem. 1989, 83, 78, (6) Subramanian, M. A.; Subramanian, R.; Clearfield, A. Solid State
- Ionics 1986, 18/19, 562. (7) Hamdoune, S.; Tranqui, D.; Schouler, E. J. L. Solid State Ionics
- 1986, *18/19*, 587. (8) Lin, Z.; Yu, H.; Li, S.; Tian, S. Solid State Ionics 1986, 18/19,
- 549.
- (9) Casciola, M.; Costantino, U.; Merlini, L.; Krogh Andersen, I. G.;
 Krogh Andersen, E. Solid State Ionics 1988, 26, 229.
 (10) Delmas, C.; Nadiri, A.; Soubeyroux, J. L. Solid State Ionics
- 1988, 28-30, 419. (11) Chowdari, B. V. R.; Radhakrishnan, K. A.; Thomas, K. A.; Subba Rao, G. V. Mater. Res. Bull. 1989, 24, 221.
- (12) Winand, J. M.; Depireux, J. Europhys. Lett. 1989, 8(5), 447.
 (13) Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G.
- J. Electrochem. Soc. 1990, 137, 1023 (14) Ado, K.; Saito, Y.; Asai, T.; Hiroyuki, K.; Nakamura, O. Solid State Ionics **1992**, 53-56, 723.
- (15) Nomura, K.; Ikeda, S.; Ito, K.; Einaga, H. Solid State Ionics 1993. 61. 293.
- (16) Hagman, L.; Kierkegaard, P. Acta Chem. Scand. 1968, 22, 1822.
- (17) Sljukic, M.; Matkovic, B.; Prodic, B.; Anderson, D. Z. Kristal-logr. **1969**, 130, 148.
- (18) Hong, H. Y.-P. Mater. Res. Bull. 1976, 1, 173.
- (19) McCarron, E. M.; Calabrese, J. C.; Subramanian, M. A. Mater. Res. Bull. 1987, 22, 1421.
- (20) Mbandza, A.; Bordes, E.; Courtine, P.; El Jazouli, A.; Soubey-roux, J. L.; Le Flem, G.; Hagenmuller, P. React. Solids 1988, 5, 315.
- (21) Alami, M.; Brochu, R.; Soubeyroux, J. L.; Gravereau, P.; Le Flem, G.; Hagenmuller, P. J. Solid State Chem. **1991**, 90, 185.
- (22) Perret, R.; Boudjada, A. C. R. Acad. Sci. Paris 1976, 282, C-245.

 $(NH_4)_2$ HPO₄ at temperature close to 950 °C. Its X-ray powder diffraction pattern was indexed on the basis of the rhombohedral $R\bar{3}c$ space group with parameters $a_{\rm R}$ = 8.922(4) Å, $\alpha_{\rm R} = 56^{\circ}33(6)'$ ($a_{\rm H} = 8.453$, $c_{\rm H} = 22.407$ Å). Moreover, two phases of $LiSn_2(PO_4)_3$ were prepared²³ by calcination of the same starting compounds at 950 and 1250 °C. Both phases were considered as NASICON type compounds, and their X-ray diffraction patterns were indexed on the basis of two rhombohedral lattices, which differ in cell volume by less than 1%. The main difference was the c/a ratio of 2.656 and 2.484 for the phases obtained at 950 and 1250 °C, respectively. However, for the sample prepared at 950 °C, an intense X-ray peak at 3.054 Å could not be indexed and the Raman spectrum showed more PO₄ vibration bands than those permitted by the rhombohedral symmetry.

In this paper the formation process of $LiSn_2(PO_4)_3$ has been followed by TG, XRD, and NMR (³¹P, ¹¹⁹Sn, and ⁷Li) techniques. In particular, stoichiometric amounts of Li_2CO_3 , SnO_2 , and $(NH_4)_2HPO_4$ have been heated at different temperature in the 180-1200 °C range, and the intermediate products have been analyzed. A structural characterization of the two LiSn₂(PO₄)₃ phases has been also made.

Experimental Section

The reagents Li₂CO₃ (Fluka, >99.0%), SnO₂ (Aldrich, 99.9%), and $(NH_4)_2$ HPO₄ (Fluka, >99%) were dried at 100 °C for 12 h. Stoichiometric amounts of these compounds were thoroughly mixed and calcined in air between 180 and 1200 °C, in a platinum crucible. Thermal treatments were accumulative. At each defined temperature the time spent was 6 h in the range 180-700 °C and 24 h above 700 °C. In all cases the mixture was ground before and after each treatment.

X-ray powder diffractograms were taken at room temperature by using a PW-1710 Philips diffractometer with Cu Ka radiation at a scanning rate of 1°/min, using a variable divergence slit such that the divergence was $2\theta/45$, given in degrees. For indexing purposes the patterns were recorded on a Siemens D501 diffractometer in the step scan mode with Cu Ka radiation, at a step value of 0.04°, measuring for 10 s at each step. The divergence slit was fixed at 0.3°, and a slit of 0.06° was placed in front of the receiving system formed by a graphite monochromator and a scintillation detector. Soller slits were used at both incident and diffracted beam collimat-

0897-4756/94/2806-1790\$04.50/0

© 1994 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, August 15, 1994. (1) Goodenough, J. B.; Hong, H. Y-P.; Kafalas, J. A. Mater. Res. Bull. 1976, 11, 203.

⁽²⁾ Shannon, R. D.; Taylor, B. E.; English, A. D.; Berzins, T. Electrochim. Acta 1977, 22, 783.

⁽²³⁾ Winand, J. M.; Rulmont, A.; Tarte, P. J. Solid State Chem. 1991. 93. 341.

Figure 1. TG curve of the stoichiometric mixture of $(NH_4)_2$ -HPO₄, Li₂CO₃ and SnO₂ up to 1000 °C (still air, 2 °C/min heating rate).

ing systems, limiting the axial divergence to less than 5°. The peaks were fitted with $K\alpha_1-K\alpha_2$ doublets,²⁴ and the position of each peak was taken to be that of the $K\alpha_1$ component, for which a wavelength λ (Cu K $\alpha_1 = 1.5405981$ Å was assumed.

Thermogravimetric curves (TG) were obtained up to 1000 °C in still air, in a thermal analyzer Stanton STA 781 equipment at 2 °C/min heating rate. The sample was packed in a platinum holder and $\alpha\text{-Al}_2O_3$ was used as reference.

³¹P, ¹¹⁹Sn, and ⁷Li MAS NMR spectra were recorded at 161.96, 149.11, and 155.50 MHz, respectively, on a MSL 400 Bruker spectrometer. The samples were spun in the range 4.5–5.2 kHz. The spectra were taken after $\pi/2$ pulse irradiation (5 μ s for ⁷Li, and 4 μ s for ¹¹⁹Sn and ³¹P). A time interval between successive scans of 30 s for the ³¹P and ⁷Li spectra and 60 s for the ¹¹⁹Sn spectra was chosen. The number of scans was in the range 40–400. The ⁷Li and 85% H₃PO₄ aqueous solutions, respectively. The reference for the ¹¹⁹Sn spectra was a 5% solution of tetramethyltin in dichloromethane. All the spectra were recorded at room temperature.

Results

The thermogravimetric curve recorded on a mixture of stoichiometric amounts of SnO_2 , $(NH_4)_2HPO_4$, and Li_2 -CO₃ is shown in Figure 1. A weight loss of 27.0% in the range 20-500 °C is observed. In addition, some changes of slope at 175, 192, and 300 °C are detected. Above 500 °C the reaction does not produce further weight loss.

The X-ray diffraction patterns corresponding to the mixture previously heated at some defined temperatures in the range 180–1200 °C are shown in Figure 2. The peaks of the different phases that do not overlap with other peaks have been labeled as follows: cassiterite SnO_2 (O), SnP_2O_7 (P), and the two $LiSn_2(PO_4)_3$ phases are referred to as I and II. The position of peaks corresponding to phase I and II agree with those reported by Winand et al.²³ for their samples prepared at 950 and 1250 °C, respectively. In this figure the X-ray patterns of the stoichiometric mixture heated at 180 and 300 °C show typical narrow peaks of SnO₂, as well as broad humps which are usually ascribed to amorphous compounds. In the range 375-700 °C, together with the SnO_2 peaks, reflections of SnP_2O_7 and the I and II phases are observed. The SnO_2 and SnP_2O_7 peaks disappear progressively on increasing the temperature. Above 700 °C, peak intensity of phase II

Figure 2. X-ray diffraction patterns recorded on the stoichiometric mixture heated at the indicated temperatures.

Figure 3. ¹¹⁹Sn MAS NMR spectra of the stoichiometric mixture heated at the indicated temperatures.

decreases, and at 1200 °C only peaks of phase I are detected.

The ¹¹⁹Sn MAS NNR spectra of the stoichiometric mixture heated at increasing temperatures are shown in Figure 3. At 180 and 300 °C the ¹¹⁹Sn spectra are formed by a set of narrow lines at -534, -568, -603, -637, and -671 ppm, and a broad line at -775/-760ppm. The central line of the set, placed at -603 ppm, defines the isotropic chemical shift value, while the others are sidebands of the central line. This set is similar to that reported²⁵ for SnO_2 . The wide line at -775/-760 ppm should be associated with an amorphous compound, in agreement with the XRD data. In the range 375-500 °C this line disappears, and two new lines are observed: a wide one at about -850 ppm and another narrow one at -828 ppm. The line at -850ppm, which is progressively eliminated above 500 °C, can be assigned to SnP₂O₇, according to the XRD data. Above 500 °C, the lines ascribed to SnO_2 disappear progressively and three narrow lines at -816, -829, and -833 ppm are clearly observed in the spectrum at 700

⁽²⁵⁾ Cossement, C.; Darville, J.; Gilles, J. M.; Nagy, J. B.; Fernandez, G.; Amoureux, J. P. Magn. Reson. Chem. **1992**, 30, 263.

Figure 4. ³¹P MAS NMR spectra of the stoichiometric mixture heated at the indicated temperatures.

°C. On the basis of the fact that only phase I of $LiSn_2(PO_4)_3$ is obtained at 1200 °C, the lines at -816 and -833 ppm observed in the spectrum at this temperature are ascribed to that phase. The other line (-829 ppm) must be associated with phase II of that compound.

The ³¹P MAS NMR spectra recorded on the stoichiometric mixture heated at increasing temperatures are shown in Figure 4. At 180 °C the spectrum consists of a broad line centered at 0.8 ppm and a shoulder at -8.9ppm. When the mixture is heated at 300 °C the broad component is eliminated, the line at -8.1 ppm increases considerably, and a new broad component at about -22ppm is observed. Moreover, two sets of sidebands separated at regular intervals from both lines are shown. At 375 °C, the spectrum shows, together with the line at -9.0 ppm, an intense line at -37 ppm and two narrow lines at -22.5 and -27.2 ppm. The other lines are sidebands. Above this temperature the lines at -9.0 and -37 ppm disappear progressively from the spectrum, the line at -27.2/-27.0 ppm remains up to 900 °C, and three lines at -21.4, -22.4, and -24.9 ppm are resolved. At 1200 °C the spectrum only shows the three latter lines. Taking into account that SnP_2O_7 is formed at about 375 °C and this compound is progressively eliminated above 500 °C, the complex line at -37ppm can be assigned to tin pyrophosphate. In addition, its frequency is close to that reported²⁶ for SnP_2O_7 (-36 ppm). The three lines at -21.4, -22.4, and -24.9 ppm must be ascribed to phase I of $LiSn_2(PO_4)_3$ while that at -27.0 ppm is associated with phase II of that compound. The lines at 0.8, -8/-9, and -22 ppm observed at temperatures below 375 °C must correspond, according to the X-ray diffraction data, to some intermediate amorphous compounds formed in the first stages of the reaction.

The ⁷Li MAS NMR spectra of the stoichiometric mixture heated at different temperatures are shown in Figure 5. In the range 180-375 °C a relatively wide line whose frequency changes from -0.5 to -1.1 ppm is observed. This line seems to be related to intermediate amorphous compounds already mentioned. Above 375 °C two lines are shown at -0.7 and -2.1 ppm, but some contribution of the former one must be present.

Figure 5. ⁷Li MAS NMR spectra of the stoichiometric mixture heated at the indicated temperatures.

In fact, the -0.7 and -2.1 ppm lines are better resolved in the range 500-700 °C. Above 700 °C, intensity of the line at -0.7 ppm increases while that of the line at -2.1 ppm diminishes. Both lines must be associated with the two LiSn₂(PO₄)₃ phases. Taking into account that at 1200 °C only phase I is obtained the line at -0.7ppm is ascribed to this phase. The other line (-2.1 ppm) is associated with phase II.

Discussion

Formation Process. The stoichiometric reaction of $(NH_4)_2HPO_4$, SnO_2 , and Li_2CO_3 to yield $LiSn_2(PO_4)_3$, according to

$$6(\mathrm{NH}_4)_2\mathrm{HPO}_4 + 4\mathrm{SnO}_2 + \mathrm{Li}_2\mathrm{CO}_3 \rightarrow 2\mathrm{Li}\mathrm{Sn}_2(\mathrm{PO}_4)_3 + 12\mathrm{NH}_3 + \mathrm{CO}_2 + 9\mathrm{H}_2\mathrm{O} (1)$$

must be accompanied by an overall weight loss of 27.9%. From the thermogravimetric curve in the range 20–500 °C (Figure 1) it is deduced a weight loss (27.0%), which agrees reasonably well with the theoretical prediction. In addition, several changes of slope at 175, 192, and 300 °C are observed suggesting that the reaction takes place through overlapping steps in which ammonia, carbon dioxide and water are removed. Above 500 °C no weight loss is appreciably detected in the thermogravimetric curve.

To get a better understanding of the reaction, the relative proportion of starting, intermediate, and final compounds, as deduced from intensity of the NMR lines ascribed to them, are plotted in Figure 6 as a function of temperature. For that the intensity of the central and its associated sidebands of the 119 Sn, 31 P, and 7 Li NMR spectra have been estimated.

Taking into account that pure $(NH_4)_2HPO_4$ decomposes at temperatures above 155 °C giving $NH_4H_2PO_4$:²⁷

$$(\mathbf{NH}_4)_2 \mathbf{HPO}_4 \rightarrow \mathbf{NH}_4 \mathbf{H}_2 \mathbf{PO}_4 + \mathbf{NH}_3 \tag{2}$$

such a reaction is expected. In fact, the broad line centered at 0.8 ppm in the ³¹P NMR spectrum of the sample heated at 180 °C shows a frequency close to that

⁽²⁶⁾ Mudrakovskii, I. L.; Shmachkova, V. P.; Kotsarenko, N. S.; Mastikhin, V. M. J. Phys. Chem. Solids **1986**, 47, 335.

⁽²⁷⁾ Bamford, C. H.; Tipper, C. F. H. Comprehensive chemical kinetics; Elsevier: Dordrecht, 1980; Vol. 22, Reactions in the Solid State.

Figure 6. Relative intensity of the ¹¹⁹Sn, ³¹P, and ⁷Li MAS NMR lines and their associated sidebands as a function of temperature. Crystalline compounds: $SnO_2(\bigcirc)$, $SnP_2O_7(\triangle)$, I LiSn₂(PO₄)₃ (**II**). II LiSn₂(PO₄)₃ (**II**). Amorphous compounds are denoted: \blacklozenge , \diamondsuit , +, \blacklozenge , ×. The symbols are related as follow: \blacklozenge to the ¹¹⁹Sn line at -775/-760 ppm; \diamondsuit , +, and \blacklozenge to the ³¹P lines at 0.8, -8/-9, and -22 ppm, respectively; and × to the ⁷Li line at -0.5/-1.1 ppm.

reported²⁸ for NH₄H₂PO₄ (0.9 ppm), although the absence of typical peaks of this compound in the X-ray diffractograms indicates that the atomic arrangement has no long-range order. The significant width of the line suggests the presence of components associated with other amorphous phosphates. In fact, at this temperature Li₂CO₃ and a portion of SnO₂ (42%) have also reacted as deduced from the broad lines at -760 and -0.5 ppm in the ¹¹⁹Sn and ⁷Li NMR spectra, respectively.

When the mixture is heated at 300 °C, $NH_4H_2PO_4$ is eliminated and only an additional small amount (4%) of SnO_2 has reacted (Figure 6). At this temperature the ¹¹⁹Sn spectrum is similar to that found at 180 °C. However, several changes are observed in the ³¹P spectrum. Thus, the line at 0.8 ppm disappears and two lines are clearly detected: one at -8.1 ppm and another wider line at -22 ppm. The line at -8/-9 ppm should be ascribed to an intermediate compound and that at -22 ppm, whose frequency is close to those of phases I and II, would be associated with an amorphous precursor of LiSn₂(PO₄)₃. The relative intensities of those lines are 45 and 55%, respectively.

In the range 300–450 °C the amorphous compounds are progressively transformed into SnP_2O_7 and the two $LiSn_2(PO_4)_3$ phases, as deduced from intensity of the 119 -

Sn and ³¹P lines ascribed to those products (Figure 6). At 450-500 °C the amount of SnP_2O_7 attains its highest value. The ⁷Li NMR spectra of the mixture heated at these temperatures (400-500 °C) shows two new lines at -0.7 and -2.1 ppm. They are better resolved when the mixture is heated at higher temperature, suggesting some contribution of the unresolved component (-0.5/ -1.1 ppm) corresponding to lithium in amorphous intermediates.

Above 500 °C tin pyrophosphate, tin dioxide, and the amorphous lithium "reservoir" are transformed into $LiSn_2(PO_4)_3$. In fact, a progressive decrease in intensity of the ¹¹⁹Sn and ³¹P lines associated with the two former products is observed (Figure 6). The amount of phases I and II of $LiSn_2(PO_4)_3$ increases between 500 and 700 °C, and phase I is developed at the expense of phase II in the range 700–1200 °C. The last observation goes parallel with the intensity variation deduced from the ⁷Li NMR spectra. Thus, intensity of the -0.7 ppm line increases, while that of the -2.1 ppm line decreases simultaneously.

Characterization of the Two LiSn₂(PO₄)₃ Phases. From the above results it can be seen that in the studied temperature range, phase II always coexists with other compounds such as SnO₂ and SnP₂O₇. However, it has been obtained by Winand et al.²³ as a single phase and its X-ray diffraction pattern indexed on the basis of a rhombohedral lattice, whose parameters expressed in terms of an hexagonal cell were a = 8.650(1) and c =21.487(5) Å; the assigned Miller indices are consistent with the space group $R\bar{3}c$. Our spectroscopic data agrees with this symmetry. Indeed, the ³¹P and ¹¹⁹Sn NMR spectra of phase II consist of one line at -27.0 and -829 ppm, respectively, indicating the existence of only one independent crystallographic site for phosphorus and another one for tin.

On the other hand, phase I which has been obtained by us as a single phase shows a X-ray diffractogram similar to that previously reported.²³ A trial using our data and an automatic indexing routine (TREOR) has led to hexagonal parameters a = 8.459(2), c = 22.440(9)Å, which are in agreement with those reported by Winand et al.²³ (a = 8.444(2) and c = 22.424(8) Å), and by Perret and Boujdada²² (a = 8.453, c = 22.407 Å). However, several peaks remain unindexed, the most prominent one being that observed at 3.049 Å, and others at 1.915 and 1.902 Å. In addition, it should be remarked that the indexing published,23 which we reproduce for comparison with ours in Table 1, presents the problem that at least two peaks have indices in conflict with the space group R3c, those indexed as (303) and (01 11). The space group $R\bar{3}c$ is the usual one in the rhombohedral structures of the NASICON type materials.^{4,16-21} The need to index all the X-ray peaks, together with the presence of more ³¹P and ¹¹⁹Sn NMR lines than permitted by the space group $R\overline{3}c$ led us to consider a lower symmetry. In analogy with the monoclinic distortion which has been reported^{3,4,5,29,30} for $LiZr_2(PO_4)_3$ we have been able to index the pattern of $LiSn_2(PO_4)_3$ on the basis of a monoclinic cell with parameters a = 14.6656(7), b = 8.4052(4), c = 8.8933-(4) Å, $\beta = 122.986(4)^{\circ}$; the estimated standard deviations

 ⁽²⁹⁾ Alamo, J.; Rodrigo, J. L. Solid State Ionics 1989, 32/33, 70.
 (30) Sanz, J.; Rojo, J. M.; Jimenez, R.; Iglesias, J. E.; Alamo, J. Solid State Ionics 1993, 62, 287.

Table 1. Powder Pattern of Phase I, Monoclinic LiSn₂(PO₄)₃ (Rhombohedral Indexing after Winand et al.,²³ Doubtful Indexes Marked*)

h	k	ı						h rho	k mbohe	<i>l</i> edral	h	k	l						h rhor	k nboh	<i>l</i> edral
monoclinic		$2 heta_{ ext{calc}}$	$2 heta_{ m obs}$	$d_{ m calc}$	$d_{ m obs}$	Ι	(hexa	agonal	l axes)	monoclini		linic	$2 heta_{ ext{calc}}$	$2 heta_{ m obs}$	$d_{ m calc}$	$d_{ m obs}$	Ι	(hexa	gonal	axes)	
$\int 2$	0	0	14.39	14.48	6.151	6.112	30	0	1	2	3 [7	3 1	$-3 \\ -3$	$\begin{array}{r} 44.52\\ 45.35\end{array}$	44.49	2.0336 1.9980	2.0348	7	3	0	6
[1]	1 1	-1 1	14.51 19.96		$\begin{array}{c} 6.101 \\ 4.446 \end{array}$						$\begin{cases} 5\\ 2 \end{cases}$	$\frac{3}{4}$	$-1 \\ 0$	$\begin{array}{c} 45.42\\ 45.58\end{array}$	45.46	$1.9951 \\ 1.9885$	1.9936	3			
${}_{2}$	0	$^{-2}$	20.01	19.99	4.435	4.438	100	1	0	4	5 [4	$\frac{1}{2}$	$^{-1}_{-4}$	45.94 46.26	45.95	1.9739 1.9611	1.9735	1	4	2	8*
{ ³	1	-1	21.01	21.07	4.226	4.213	50	1	1	0	{1	3	-3	46.27	46.30	1.9606	1.9594	7	0	1	11
[0 [3	$\frac{2}{1}$	0 0	$\begin{array}{c} 21.12\\ 24.13\end{array}$		$4.203 \\ 3.685$						{ 7	1	-1	47.45	47.45	1.9144	1.9145	10	0	2	10*
$\begin{cases} 3\\ 0 \end{cases}$	$\frac{1}{2}$	$^{-2}_{1}$	$24.24 \\ 24.29$	24.24	$3.669 \\ 3.662$	3.669	35	1	1	3	[4 [2	$\begin{array}{c} 0 \\ 2 \end{array}$	$^{2}_{-4}$	$47.42 \\ 47.71$		$1.9155 \\ 1.9047$					
$\frac{4}{2}$	$0 \\ 2$	$^{0}_{-2}$	$\begin{array}{c} 29.01 \\ 29.25 \end{array}$	29.03 29.27	$3.075 \\ 3.050$	$3.073 \\ 3.049$	35 55	0	2	4	$\begin{bmatrix} 5\\2 \end{bmatrix}$	3 4	$^{-3}$	$47.77 \\ 47.86$	47.79	1.9023 1.8989	1.9017	13	1	3	4*
3 [0	$\frac{1}{2}$	$\frac{1}{2}$	$31.89 \\ 32.06$	31.92	2.8039 2.7896	2.8014	$\left\{ \frac{28}{28} \right\}$	1	1	6	6 6]	$\frac{2}{2}$	$^{0}_{-4}$	49.42 49.67	49.43	$1.8427 \\ 1.8341$	1.8424	5	_	_	
٤3 إ	1	-3	32.07	32.07	2.7889	2.7888	37 J				ĺo	4	2	49.76	49.73	1.8309	1.8319	9	2	2	6*
	1	-2	32.58	32.60	2.7464	2.7445	4	2	1	1	84	4	$-2 \\ -2 \\ 2$	50.35 50.72	50.34 50.70	1.7985	1.8112	<1 1 7			
1 5	2 3 1	-1 0 -1	32.01	32.76	2.7455	2.7316	2				$\int \overline{1}$	3	3	52.40 52.64	52.40	1.7373	1.7425	19	$\int 4$	0	4
1	3	-1	33.52 34.21	33.48	2.6716	2.6744	1				$\int_{\frac{5}{7}}$	1	-5	52.70 53.21	53.22	1.7356 1.7202	1.7197	۰ <i>۳</i> <1	<u></u> 2	1	10
$\begin{cases} 1\\1 \end{cases}$	1	-3	34.34	34.33	2.6091	2.6101	4	0	1	8	∫ ⁵	3	-4	53.62	53.66	1.7080	1.7167	<1			
4 15	2	0 -3	36.16 36.25	36.21	2.4818	2.4788	12	2	1	4	l 2	$\frac{4}{3}$	-3 1	$53.67 \\ 55.87$	55.87	1.7064 1.6442	1.6443	2			
$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right.$	3	1	36.34	36.34	2.4704	2.4703	20 J	_	_	-	_ { ⁷	1	-5	56.04	56.06	1.6398	1.6392	3			
- 6 3	0 3	$^{-2}_{-1}$	36.74 36.95	36.77 36.96	2.4442 2.4308	2.4423 2.4302	$\left. { 11 \atop 17 } \right\}$	3	0	0	[2]	4 3	$^{2}_{-1}$	56.07 57.19		$1.6390 \\ 1.6093$		-			
2 [3	$\frac{2}{3}$	$^{-3}_{0}$	$37.44 \\ 38.90$	37.49	$2.4001 \\ 2.3133$	2.3970	1				{8	2	-4	57.30	57.26	1.6067	1.6076	6			
{3	3	-2	38.97	38.92	2.3091	2.3122	5	3	0	3	$\left\{ \begin{array}{c} 1 \end{array} \right\}$	5	1	57.53	57.56	1.6006	1.6000	7			
$\frac{2}{4}$	2 0	$\frac{2}{-4}$	40.55 40.66	$40.56 \\ 40.67$	$2.2228 \\ 2.2173$	$2.2224 \\ 2.2166$	${2 \\ 3}$	2	0	8	[9 [6	$\frac{1}{4}$	$^{-3}$	$57.57 \\ 57.82$		$1.5997 \\ 1.5934$					
$\left\{ \begin{array}{c} 1 \\ \end{array} \right\}$	1	3	42.17	42.23	2.1413	2.1383	7	1	0	10	٤ ا	5	-1	57.97	57.93	1.5897	1.5906	6			
12 6	02	-4 -2	42.26 42.76	42.78	2.1367 2.1129	2.1121	5	2	2	0	1 7	1	-5 1	59.16 61.38	59.16 61.37	1.5604	$1.5605 \\ 1.5094$	$\frac{2}{4}$			
0 5 6	4 1 0	-4 0	43.01 43.32 44.14	43.02 43.34 44.14	2.1013 2.0871 2.0503	2.1008 2.0861 2.0502	3 2 3				$\left\{ \begin{array}{c} 5\\2 \end{array} \right.$	3 4	-5 -4	61.86	61.87	1.4987 1.4982	1.4984	7			

quoted have been obtained from a Rietveld refinement now in progress. The indexed pattern is shown in Table 1. It can be seen that the intense peak at 3.049 Å is now indexed as $(22\bar{2})_{mon}$; this peak and the $(400)_{mon}$ come from splitting of the $(024)_{rh}$. All peaks reported²³ as of doubtful indexing (they appear marked with asterisks in Table 1) are adequately accounted for. Further support to this indexing is provided by the observed splitting of several ideal rhombohedral reflections:

 $(i)~(116)_{rh}$ splits into $(311)_{mon},~(022)_{mon},~and~(313)_{mon},$ with spacings calculated at 2.8039, 2.7896, and 2.7889 Å, of which only two resolved peaks are seen at 2.8014 and 2.7888 Å.

(ii) $(214)_{rh}$ splits into $(420)_{mon}$, $(51\overline{3})_{mon}$, and $(131)_{mon}$, predicted at 2.4818, 2.4761, and 2.4704 Å; we observe two very close peaks at 2.4788 and 2.4703 Å.

(iii) $(300)_{rh}$ splits into $(60\overline{2})_{mon}$ and $2 \times (33\overline{1})_{mon}$, which we observe at 2.4423 and 2.4302 Å, in agreement with their predicted values of 2.4442 and 2.4308 Å.

Other splittings can be deduced from an attentive study of the data in Table 1.

Our indexing is consistent with a monoclinic C lattice. The X-ray data show systematic absence of reflections h0l with l odd, so the possible space groups are C2/c or Cc. For space group assignment the spectroscopic features must be considered. Thus, the ³¹P NMR spectrum shows three lines with the same intensity at -21.4, -22.4, and -24.9 ppm (Figure 4), while two equal lines at -816 and -833 ppm are observed in the ¹¹⁹Sn NMR spectrum (Figure 3). The presence of three crystallographically independent phosphorus and two tin sites supports the space group Cc.

Finally, two lines at -0.7 and -2.1 ppm are observed in the ⁷Li NMR spectra of phases I and II, respectively. On the basis that in other rhombohedral LiM₂(PO₄)₃ (M = Zr, Ge) samples lithium occupies preferentially the M1 site,^{4,21} the line at -2.1 ppm observed only in the spectrum of phase II is assigned to lithium in that site. Taking into account that the NASICON framework shows two very different environments for alkali ions in the M1 and M2 sites, the other line (-0.7 ppm) would be ascribed to lithium in the M2 environment. In the monoclinic phase I, the Cc symmetry should induce a differentiation of the M2 sites into three types; however, only one line at -0.7 ppm is observed suggesting that the new M2 environments are similar. The position of the two ⁷Li lines are close to that found for LiZr₂(PO₄)₃. In this case, the observed lines at -0.8 and -1.4 ppm in the ⁷Li NMR spectrum have been assigned³⁰ to lithium placed in the M2 and M1 environments, respectively.

Conclusions

Intermediate amorphous compounds are formed in the first stages of the reaction (180–300 °C). Between 300 and 450 °C they are partially transformed into SnP_2O_7 , and above 450 °C two phases of $LiSn_2(PO_4)_3$ are obtained. One (phase II) coexists with SnO_2 and SnP_2O_7 in the range 450-1100 °C, the other (phase I) has been prepared as a single phase at 1200 °C.

Phase II shows one site for phosphorus and another one for tin, which is in agreement with the rhombohedral $R\bar{3}c$ symmetry of the NASICON framework. In phase I we have detected three phosphorous and two tin sites, which supports a monoclinic Cc symmetry. By using a monoclinic cell of parameters a = 14.6656(7), b = 8.4052(4), c = 8.8933(4) Å, $\beta = 122.986(4)^\circ$, the X-ray powder diffraction pattern of phase I has been fully indexed. Two lithium environments related to M1 and M2 sites of the NASICON framework have been also identified.

Acknowledgment. Financial support by CICYT of Spain (Project MAT 92-0202) is gratefully acknowledged.